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Localized vibrations in slider-block models
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Department of Geological Sciences, Snee Hall, Cornell University, Ithaca, New York 14853
(Received 6 November 1997

We consider linear and two-dimensional arrays of slider blocks connected by springs. The blocks interact
with a surface through a static coefficient of friction; the dynamic friction is taken to be zero so that energy is
conserved. The initial energy of the system is prescribed and the only control pararistproportional to
the ratio of the mean initial energy to the static frictional force squared. “Molecular-dynamics” simulations of
the temporal evolution of these systems have been carried out. For arbitrary initial conditions the arrays
self-organize into patches of oscillating blocks with a dominant normal mode vibration. The fraction of blocks
within the oscillating patches is almost independent of the prescribed energy, but the size of the patches
systematically increases with increasing energy. The larger patches accommodate the larger available energies.
The behavior of these systems is strikingly different from the behavior seen in regular slider-block models.
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[. INTRODUCTION the adjacent blocks, which would then be allowed to slip in a
subsequent step or steps, until all blocks were again stable.
Burridge and Knopoff1] introduced the coupled slider Brown et al. [8] proposed a modification of this model in-
block model as an analog for earthquakes. The slider blockgolving a two-dimensional array of blocks. Many other stud-
are pu||ed over a surface by Springs attached to a Constaiﬂs of Slider—blpck models have been carried out and these
velocity driver plate and are also attached to each other bjjave been reviewed by Turcof@]. _ _
springs. If the static friction is greater than the slippily- Rundle etal. [10] considered a multiple slider-block
namio friction, stick-slip behavior is found. Huang and Tur- Model in a mean-field approximation and showed that the
cotte[2] showed that two slider blocks exhibit classic chaotice€nergy fluctuations are characterized by Boltzmann statistics.
behavior as long as there is any asymmetry in the system. U and Sornetté11] commented on this work and argued
their study the equations of motion for the two blocks wereagainst thermalization. Moreiet al.[12] considered a mul--
solved simultaneously. A modification of this model is to tiple slider-block model without a driver plate. The dynamic
allow only one block to slip at a time. The first block to friction was set equal to zero so that energy was conserved
become unstable is allowed to complete its harmonic motio@nd cellular-automata solutions were obtained. Only one
before the stability of the second block is considered; if thePlock was allowed to slip during a time step. Sequential
second block is then unstable it is allowed to slip before thééwWeeps across the lattice were carried out. Again a Boltz-
motion of the driver plate is updated. This then is a cellular-mann distribution of energies was found. The purpose of this
automata model. Extensive studies of this model were carP@per is to carry out a full dynamical simulation of this prob-
ried out by Narkounskaia and Turcoftg] and its behavior lem using a molecular-dynamics code.
was essentially identical to the results when both blocks were
allowed to slip simultaneously. Il. MODEL
Carlson and Lang€d] considered long linear arrays of
slider blocks with each block connected by springs to the In this paper we consider one-dimensional linear arrays
two neighboring blocks and to a constant-velocity driver.and two-dimensional square arrays of slider blocks; each
They used a velocity-weakening friction law and consideredlock of massm is connected to its neighbors with springs
up to 400 blocks. Slip events involving large numbers of(spring constank). There is no driver plate in this model. In
blocks were observed, the motion of all blocks involved in aboth cases displacements are limited to xhéirection. We
slip event were coupled, and the applicable equations of maassume zero dynamic friction and prescribe the static friction
tion had to be solved simultaneously. Although the system i$ between a block and the surface over which it is sliding.
completely deterministic, the behavior was apparently chaThe initial total energy in the system is also prescribed. Be-
otic. Frequency-size statistics were obtained for slip eventsause the dynamic friction is zero, the total energy in the
and the events fell into two groups: Smaller events obeyed aystem is preserved. Some blocks are unstable at a given
power-law (fracta) relationship, but there was an anoma-time and are free to slip; the remaining blocks are stuck.
lously large number of large events that included all the For the linear-array model a particular slider block is des-
slider blocks. The observed behavior was characteristic ofgnated by the subscript The equation of motion of each
self-organized criticality{5]. Nakanishi[6,7] studied mul-  block is
tiple slider-block models using the cellular automata ap-
proach. A linear array of slider blocks was considered, but a2
only one block was allowed to move in a slip event. The slip m— =f;, (1)
of one block could lead to the instability of either or both of dt?

1063-651X/98/5(5)/51269)/$15.00 57 5126 © 1998 The American Physical Society



57 LOCALIZED VIBRATIONS IN SLIDER-BLOCK MODELS 5127

with the net force on the block given by Our primary method of solution is a “molecular-
dynamics” (MD) algorithm for the numerical integration of
fi=K(X_1+Xj 11— 2X;). (2)  Egs.(6)—(8) for all blocks simultaneously. At each time step

the slip condition(9) for stuck blocks was checked. When-
Tever the velocity of an oscillating block went through zero
the stick condition(8) was checked and if the force on this

If a moving block reaches zero velocity and the net force o
this block is less than the static friction threshbldhe block

will stick, block was less than one the velocity was set to zero.
dx. dx We have carried out a series of simulations using a MD
d_t'ﬂoy fi<fs then d_tI:O’ (3)  algorithm on slider-block arrays with lengths up to 4096

blocks for one-dimensiondllD) and 64x 64 for 2D arrays.
Periodic and free boundary conditions were considered, giv-
ing basically the same results. A random distribution of ini-
f,>f,. (4) tial displacements was given to the blocks corresponding to
the specified value of the energy parametetin each simu-
It is convenient to introduce the nondimensional variables lation a time-dependent transient was observed. After this
transient a steady-state distribution of oscillating clusters was
k\? Vkmo; obtained. Different time steps with different “Runge-
ml Vi= fo Kutta” schemes were tested to ensure no dependence on the
time discretization. We found that the time needed to obtain
ke a steady-state distribution and statistical properties of the
Esz—;, (5)  system were independent offor sufficiently smallz.
fs Our simulations showed that independent of the dimen-
) ) sion of the array(1D or 2D), boundary conditiongfree or
The governing equationd)—(3) become periodig, type of random initial conditions, and for a large
) range of the energy parametgrthe system self-organizes
ﬂ:F‘ 6) into a final steady state with the fraction of stuck blocks
dT? ' essentially constant independentofand a large fraction of
the energy(generally more than 99%) localized in clusters
Fi=Xi_1+Xit1—2X; (7)  of slipping blocks. The size of the clusters of slipping blocks
increases systematically with increasing values of the energy
with the stick condition parameteru.
In the final steady state it is appropriate to analyze the
if %HO E<1 then %:0 ®) distribution of harmonic modes in the clusters. For the 1D
dar 7 ! dT model the motion of thdcth block in a cluster of size is a
) ) N combination of harmonic modes for the linear chain of
until the slip condition blocks with fixed boundaries

Fi>1. (9)

until the net force exceeds the static friction

Fi=r, X=-m T=t(

I=n K
At T=0 the blocks are given a random distribution of Xk:; C'S'r{m sifoT+a),  klell,...n],
displacements; the resulting energy in the spdnge,. The (1)
mean energy in the springs &0 is e5. Since no energy is
dissipated by dynamic frictiofthe dynamic friction is taken where the frequency, of model is given by
to be zer, energy is conserved argl is a constant inde-
pendent of time. It is convenient to introduce the non- ZSir{ Ky
w|=

dimensional energy parametgs 2+ 1) (12

_ k_es. (10) with corresponding amplitud€, and phasey, .

fg This modal expansion can also be used to formulate an

alternative ‘“semianalytical” algorithm for the time evolu-

This is the only parameter in the problemufis large, very  tion of a linear array. Equation€l1) and (12) completely
few of the blocks would be expected to stickyifis small, a  specify the behavior of a cluster of n blocks. The lifetime of
large fraction of the blocks would be expected to stick. Ata cluster is defined to be time between when the cluster is
any given time the system can be viewed as a collection ofreated and the time when a moving block in the cluster
clusters of moving blocks with stuck blocks on the clustersticks or a boundary block slips. In writing E(L1) we have
boundaries. If the force on a boundary block of a cluster isassumed that the boundary blocks have zero displacement.
greater than one, then that block will join the cluster. If dur-This is not true, in general, so a shift and rescaling of the
ing the motion of a block it has zero velocity and the force atblocks coordinateX are required. However, as previously
this moment is less than one, the block will stick. If it is an stated, the total energy in the stuck blocks in the steady state
edge block, the block will be removed from the cluster; if it is less than 1%. The frequencies are unaffected by these
is an interior block, the cluster will break into two clusters. boundary adjustments.

Mm



5128 GLEB MOREIN AND DONALD L. TURCOTTE 57

1.0 T T T

0.8

; =0.25
r p=0.5
0 1000 2000 T 3000 4000 5000 0.6 ("‘" " p=1.0

c - u=2.0
s ; / f/’fﬂﬂ“’ §=8.0
7 04k /,f
i500 L= i
250 = 02 ;
T I v/
0 5000 10,000 15,000 20,000 0.0 4 J : :
T 0 5000 1 O_(I)_OO 15000 20000
(b)

FIG. 2. Transient evolutions of linear arrays of 4096 blocks. The
FIG. 1. Transient evolution of a linear model of 750 blocks. Thefraction of stuck block<, is given as a function of tim& for six
array configuration is shown vertically with slipping blocks black values ofu. Each curve is obtained by averaging 25 simulations.
and stuck blocks white. Tim& is shown horizontally. A random  All quantities are dimensionless.
distribution of energiegdisplacementisis given to the blocks ini-

tially (T=0). The development of well-defined clusters of slipping . . . L .
blocks is clearly illustrated. All quantities are dimensionle&s. The transient behavior of the simulation is further illus-

The energy parametgr=2.0 and each fifth time step is shown over frateéd in Fig. 2, where the fraction of stuck blocks is
a total timeT=5000. (b) The energy parameter=8.0 and each 9iven as a function of timé& for several values of the energy
20th time step is shown over a total tirfie= 20 000. parameteru. It is seen that the length of the transient in-
creases systematically with increasing valueg.oft is also
The semianalytical method starts with arbitrary initial S€en that the fraction of stuck blocky for large times has
conditions. We identify clusters of moving blocks or blocks only a weak dependence qu particularly for largeu.
with zero velocity and a net force greater than one. We next The transient behavior of the system is a process involv-
determine theC,,«;, and w, from Egs.(11) and (12). The ing the merger and breakup of clusters of slipping blocks.
third step is to find the shortest lifetime among the clustersFor each value ofx there is a preferred size for the stable
This is done by the numerical solution of the applicable setlusters that eventually emerge. The fraction of the blocks
of algebraic transcendental equations and the stick and slifat are slipping is relatively constant; increasing the average
conditions from Eqgs(9) and (8). The cluster geometry is energy increases the size of the clusters. The system self-
corrected and the sequence of steps is repeated until a stea@yganizes into a steady-state configuration in which the mean
state solution is obtained. We compared this approach witkluster size has a systematic dependence on the energy pa-
the MD method for a linear array of four blocks and the rameteru.
results were virtually identical. The fraction of stuck blocks at equilibriu@; is given in
Fig. 3 as a function of the energy parameterThe means
and standard deviations are given for a large number of
simulations. In the energy range<g.<32 the fraction of
We first present the results of MD simulations for the timestuck blocksCg; decreases only from 0.58 to 0.48. This fur-
evolution of 1D arrays of slider blocks. The time evolution ther illustrates the relatively weak dependenceCgf on u
for two typical examples with 750 blocks is given in Fig. 1; for large w.
fixed edge conditions were used. The array configuration is To illustrate the behavior of the clusters, the steady-state
shown vertically with slipping blocks black and stuck blocks distribution of energieg; and velocitiesv; in a linear array
white. The nondimensional tim€ is shown horizontally. A of 256 blocks withu=1 is given in Fig. 48 and with u
random distribution of energieglisplacemenisis given to =8 in Fig. 4b). The energy of a block is taken to be the sum
the blocks initially (T=0). The results fou=2 are shown of the kinetic energy of the block and one-half of the poten-
in Fig. 1(a); each fifth time step is printed and the total non-tial energy in the two adjacent springs. The kinetic energies
dimensional time i§ =5000. Initially, relatively few blocks are taken at an arbitrary time so that some clusters have
are stuck and the energy is randomly distributed. As timeelatively small velocities compared to the total energy for
evolves clusters of slipping blocks form with the energy con-blocks in that cluster, which remains constant during the
centrated in these clusters; many more blocks stick. Eventwsluster lifetime (harmonic motion The blocks appear to
ally, a steady-state configuration is reached. The results fdrave a near sinusoidal standing-wave dependence of veloci-
=28 are shown in Fig. (b); each 20th time step is printed ties within a cluster with the oscillations of adjacent blocks
and the total nondimensional time 75=20 000. The time 180° out of phase. It is clear that there is a systematic in-
evolution is similar to that fow=2 except the transient is crease in the maximum energy with cluster size. As the en-
longer and the clusters of slipping blocks are larger. ergy parametel is increased the size of the steady-state

Ill. ONE-DIMENSIONAL SIMULATIONS
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. The motion of alln blocks in a cluster of sizea is now
8 specified.
06 1 . 1 We next find the amplitude of the motion of the central
Cef 8 § £ block in a cluster with an odd number of blocks, thatris,
=2m+1 with k=m+1. From Eqs(13) and(15) we have
04 r
|lmn
Si 3 (—1)(n-Dr2
0.2 - 1 Xm+1= = = (16)
Zs'r{m 25"{m
®%y 5 10 15 20 25 30 35 The total energy of the central block in a cluster is the maxi-
H mum kinetic energ\E, ., of the block and is given by
FIG. 3. Steady-state fraction of stuck blocks; given as a 232
function of the energy parametgr. The mean and standard devia- E.. = “ntm+1 1 (17)
. . . . - kem— = .
tion are given at each energy for 25 simulations. All quantities are 2 .
dimensionless. 8sirf 2(n+1)
clusters also increases, allowing the same number of slippingor very large clustersn(—~) this becomes
blocks to accommodate the larger amount of energy avail-
able. n2
In order to better understand the structure of the steady- Ekem P (18)

state clusters we have carried out spectral analyses of the slip
velocity of a block within a cluster that has reached thethese results are compared with observations in Fig. 6. It is
steady state. Typical examples for clusters with 22 and 3Zeen that there is good agreement.

oscillating blocks are given in Fig. 5. The spectral power The total energy in a cluster of size E,, can be ob-

densityP of the velocity of an inner cluster block is given as t5ined by summing the maximum kinetic energies of the
a function of frequency. The excitation of the frequencies pocks in the cluster. The result is
given in Eq.(12) is clearly illustrated. The highest frequency

is always dominant with the others suppressed by an order of n+1

magnitude or more. All resonant frequencies with respect to E.= , (19
the highest frequency are missing from the power spectrum. 16sir? _T

In the steady state the blocks in a cluster exhibit a well- 2(n+1)

defined harmonic oscillation. This harmonic oscillation .

evolves during the initial transient. At=0 a random distri- hich for very large clusters becomes

bution of modes, a white noise, was introduced. The nonlin- 3

ear static friction mixes these modes until a single harmonic E.— n_. (20)
becomes dominant in a cluster. 4772

Our spectral studies show that the highest-frequency
mode in Eq.(11) dominates. Thus we consider only the These results are compared with observations in Fig. 7.
model=n and Eqgs(11) and(12) become Again, good agreement is found.
The analysis given above shows that the energy in large
clusters o>1) scales with the size of the cluster according
sin(w, T+ ap), (13)  to E,~n3. Thus the larger the energy the larger the mean
size of the clusters required to contain the energy. Figures 1
and 2 show that the transient behavior results in a self-
organization of clusters in which approximate normal mode
oscillations accommodate the initial energy. The nonlinear
stick-slip behavior mixes the initially random modes to the
In order for the blocks on the edge of a cluster to remair@PProximate normal mode behavior observed in the steady
stuck the maximum nondimensional force on these block§tate. _ o o _
must be less than one from E@). We will assume that the Although there is a statistical distribution of cluster sizes,
actual force on these blocksks=1/2 and will show that this there is a systematic dependence of the mean clustensize
is consistent with our results. on energyu. The distribution of cluster size{n) is given
The maximum displacement of the edge block is obtainedn Fig. 8 for four nondimensional energigs=0.5, 1.0, 2.0,
by takingk=1 and theF=1/2 force condition requires that and 4.0. Although there are relatively large numbers of clus-

%= C.si nkm
oSN T

. (14

s nar
Ul PYPE
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FIG. 4. Steady-state distributions of energigsand velocities/; given for a linear array of 256 blocks with) u= 1 and(b) x=8. All
quantities are dimensionless.

ters withn=1,2, these contain a very small fraction of the The dependence of the mean cluster size from Fig. 8 on the
slipping blocks. There is a well-defined cluster size that conenergy parametex is given in Fig. 9. The best-fit straight
tains the most blocks and this is seen to increase systemafine is a power lawn~ %3 which is in excellent agreement
cally with increasingu. In order to quantify the dependence wth Eq. (23).

of cluster size on energy we considey; clusters each with

size n. Again assuming that one-half of tH¢ blocks are
slipping, we can write IV. TWO-DIMENSIONAL SIMULATIONS

We have also carried out a series of MD simulations on
2D square slider-block arrays. The nondimensional variables
introduced in Eq(5) and the nondimensional energy intro-
The cluster energ¥,, is related to the energy paramefer  duced in Eq.(10) remain valid. A particular slider block is
by designated by subscripigposition in thex direction) andj

(position in they direction. Displacements are restricted to
Nu=ngEg. (22)  thex direction, so that the governing nondimensional equa-
tions become

Noting that EC|~n_3 from Eg. (20), we can combine Egs.
(21) and(22) to give

O.5N=I’1C|E (21)

L =F. .
n~p. (23) arz 24
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@ FIG. 6. Dependence of the maximum energy in a clukigr,
10? . divided by (n+1)? on cluster sizen given for energy parameters
n=28.0, 16.0, and 32.0. The results are in good agreement with the
number of blocks prediction given in Eq(17). All quantities are dimensionless.
in the cluster = 32
10° f 1
The transient sticking and slipping of blocks has converted
the initial random phases and amplitudesite noise to a
1072 | series of steady-state, drum-head-like normal mode oscilla-
P tions.
The transient behavior is further illustrated in Fig. 11,
w0 L i where the fraction of stuck blockS, is given as a function
of time for several values oft. Once again the transient
self-organization leads to a fraction of stuck block being ap-
100 | i proximat.ely constan€,~0.76 over a relatively wide range
of energies.
In Fig. 12 the final equilibrium configurations are given
10° , ‘ ‘ ‘ for several different energies. In each case nearly circular
0.0 05 1.0 ® 15 20 25 patches form with normal mode behavior. The size of the

patches increases systematically with increasing energy as in

the 1D simulations. The general behavior of the 2D simula-
FIG. 5. Power spectral densify as a function of frequency  tion is very similar to the 1D simulations discussed above.

for the velocity V(T) of a slipping block in steady-state clusters.

We considerw=8.0 and cluster sizéa) n=22 and(b) n=32. All 0.07 . , . . .

(b)

quantities are dimensionless.
0.06 -:- i
Fii=XicgjtXivgj+ X -1t Xi 14X, (29 :
. . i, 0.05 % 1
with the stick condition .
¢ O F<l thenTdi_g (25  Feo ¥ |
if ———0, F;;< en ——=
at = daT )3 [ e
003 [\ BRI, . e, . . 1
. . ... [ L R I IR AT W L x
until the slip condition 4 i T e
002 b Lot g U - : i
Fij>1 (27) .
. 0.01 B
instead of Eqs(6)—(8).
The time evolution for a 6464 array with u=2.5 is

given in Fig. 10. The slipping blocks are white and the stuck 000, 10 20 30 20 50 60 70

blocks are black. Under the random initial conditions given n

at T=0 few blocks are stuck. Soon patches of slipping FiG. 7. Dependence of the cluster enefgy divided by (n
blocks form and these patches migrate, change shape, col-1)% on cluster sizen given for energy parameteys=4.0, 8.0,
lide, and break up. Eventually, a steady state is establisherb.0, and 32.0. The results are again in good agreement with the
with nearly circular patches with a normal mode behavior prediction given in Eq(19). All quantities are dimensionless.
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FIG. 8. Distribution of cluster size§n) given as a function of T = 3500 T = 5000

n for energy parameterg=0.5, 1.0, 2.0, and 4.0. These results are
for a linear array of 4096 blocks and 25 realizations have been
averaged. All quantities are dimensionless.
V. DISCUSSION
We have considered arrays of slider blocks connected by

springs that exhibit stick-slip behavior due to a frictional

interaction with a surface. The dynamic friction is taken to  FIG. 10. Transient evolution of a 6464 square array of slider

be zero so that energy is conserved. The governing equatiofocks with energy parameten=2.5. The slipping blocks are

are linear except for the stick-slip behavior; this behaviorwhite and the stuck blocks are black. The evolution of the system is

introduces a strong nonlinearity. shown at six times. The development of nearly circular clusters of
A series of numerical simulations have been carried ou$lipping blocks is clearly illustrated. All quantities are dimension-

on both linear arrays of blocks and square, two-dimensiondfSs:

arrays of blocks using molecular-dynamic algorithms. Simi-

lar evolutionary behaviors are found in the two cases. Thelip. However, this is not the behavior observed as an array

only parameter in the problem is the energy parametdfor ~ approaches a steady state.

large values ofu the mean energy is large compared to the Initially, we start the arrays with a random distribution of

static friction and a large fraction of the blocks would be energies in the blocks that corresponds closely to a white

expected to slip. For small values pf the mean energy is noise or random distribution of normal modes. In both the

small and a small fraction of the blocks would be expected toLD and 2D arrays a transient period of self-organization oc-

100 T T 1.0

0.8 r
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200"

1
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n

L
o 2000 49I90 6000 8000

FIG. 9. Dependence of the mean cluster sizBom Fig. 8 on FIG. 11. Transient evolution of two-dimensional arrays of 64
the energy parameter. The best-fit straight line has a slope of 0.53 X 64 blocks. The fraction of stuck blocks; is given as a function
compared to the value 0.5 from E@3). All quantities are dimen- of time T for the valuesu=0.4, 0.8, 1.0, 1.5, 2.0, 3.0, and 4.0. All
sionless. guantities are dimensionless.
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It is interesting to compare the behavior of our slider-
block model with the observation of oscillons in vertically
vibrating granular layerkl3]. An oscillon, in this context, is
an isolated heap of grains that oscillates up and down. Be-
cause the oscillon is subharmonic, peaks and craters can co-
exist. They are also very stable lasting for more thaf 10
periods. In our model excitations are also localized and be-
come time independent.

It is also of interest to point out the profound differences
between a cellular automata solution to this probf&&j and
the molecular-dynamics formulation presented in this paper.
In the cellular automata formulation only one block was al-
lowed to slip at a time; the remaining blocks were stationary.
If the block considered was unstable it was allowed to com-
plete a single harmonic oscillation before the next block was

n=15
IL=3.0 studied using a checker-board selection of blocks. In this

case the energy distribution in the blocks thermalized and a
modified Maxwell-Boltzmann distribution of energies was
obtained.

In the molecular-dynamics formulation of the problem the
equations of motion of slipping blocks are solved simulta-
neously and normal mode oscillations are obtained. Patches
FIG. 12. Steady-state configurations of the two-dimensional sysgf §I|pp|ng bIO(;kS evolve into an equilibrium structure in
tem of size 64 64 given for energy parametegs=0.4, 0.6, 1.0, which the fraction of stuck blocks_ has only a _Weak_ depen-
1.5, 2.0, and 3.0. All quantities are dimensionless. dence on energy, but the cluster size systematically increases
with energy. In this formulation the self-organized critical

steady state is reached without further evolution. In thigPative slider-block models is not observed.

steady state the slipping clusters exhibit a normal mode be- In addition to the simple model presented here we have

havior with the harmonic motion of adjacent blocks in a@!S0 found that the same self-organization process can be
cluster being 180° out of phase and the energies of blockgPServed in more complex slider-block systems. In the pres-
having a sinusoidal dependence on position across the clu§nce of a stationary driver plate the system possesses a simi-

ter. The 2D clusters have nearly circular planforms and hav&! et of fundamental harmonic modes. With a slow moving
drum-headlike normal mode oscillations. driver plate clusters of moving oscillating blocks can follow

In both one and two dimensions the fraction of stuckthe driver plate. Fundamental modes in this case were found
blocks is nearly independent of energy over quite a widd® Pe @ disturbed version of harmonic modes for the system
range of energies. However, the size of the clusters has Without driving. There was no stationary state and the life-
systematic dependence on energy, with the mean cluster sigges of the clusters were finite. In addition, a small dynamic
increasing systematically with energy. The energy in thdriction can be accommodated. We have not studied these
edge blocks in a cluster is prescribed as a fractio &) of ~ Cases in detail as molecular-dynamic simulations become

the maximum force a stuck block can sustain. In one dimenY€ly time consuming. _

sion the energy of a clustét,, scales with the size, of a “We have also found it interesting to compare our results

cluster according t&€,~n3. Thus larger clusters can ac- with models used to describe localized vibrations in perfect
[ c*

commodate more energy. The nonlinear stick-slip behaviof"harmonic crystalsl4,13. These physics models demon-

converts and self-organizes the initial random mode behavicitrate that self-localized vibrational modes can be stable for
to a nearly normal mode behavior many types of interatomic potentials. The mechanics of lo-

We observe in both one and two dimensions that the fracc_:alization is somewhat different as the frequency of these
tion of stuck blocks is essentially independent of the energ)llocal'zefd rr;odesf Itsh at_)otve tthe §pecttruT flound for the linear
for relatively large energiesy{>1). This can be explained approximation of the interatomic potential.

qualltanvely. in terms of a scale-lnvarlant. cascade. Small ACKNOWLEDGMENTS
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