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Localized vibrations in slider-block models

Gleb Morein and Donald L. Turcotte
Department of Geological Sciences, Snee Hall, Cornell University, Ithaca, New York 14853

~Received 6 November 1997!

We consider linear and two-dimensional arrays of slider blocks connected by springs. The blocks interact
with a surface through a static coefficient of friction; the dynamic friction is taken to be zero so that energy is
conserved. The initial energy of the system is prescribed and the only control parameterm is proportional to
the ratio of the mean initial energy to the static frictional force squared. ‘‘Molecular-dynamics’’ simulations of
the temporal evolution of these systems have been carried out. For arbitrary initial conditions the arrays
self-organize into patches of oscillating blocks with a dominant normal mode vibration. The fraction of blocks
within the oscillating patches is almost independent of the prescribed energy, but the size of the patches
systematically increases with increasing energy. The larger patches accommodate the larger available energies.
The behavior of these systems is strikingly different from the behavior seen in regular slider-block models.
@S1063-651X~98!10405-1#

PACS number~s!: 05.40.1j, 02.70.Ns
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I. INTRODUCTION

Burridge and Knopoff@1# introduced the coupled slide
block model as an analog for earthquakes. The slider blo
are pulled over a surface by springs attached to a cons
velocity driver plate and are also attached to each othe
springs. If the static friction is greater than the slipping~dy-
namic! friction, stick-slip behavior is found. Huang and Tu
cotte@2# showed that two slider blocks exhibit classic chao
behavior as long as there is any asymmetry in the system
their study the equations of motion for the two blocks we
solved simultaneously. A modification of this model is
allow only one block to slip at a time. The first block t
become unstable is allowed to complete its harmonic mo
before the stability of the second block is considered; if
second block is then unstable it is allowed to slip before
motion of the driver plate is updated. This then is a cellul
automata model. Extensive studies of this model were
ried out by Narkounskaia and Turcotte@3# and its behavior
was essentially identical to the results when both blocks w
allowed to slip simultaneously.

Carlson and Langer@4# considered long linear arrays o
slider blocks with each block connected by springs to
two neighboring blocks and to a constant-velocity driv
They used a velocity-weakening friction law and conside
up to 400 blocks. Slip events involving large numbers
blocks were observed, the motion of all blocks involved in
slip event were coupled, and the applicable equations of
tion had to be solved simultaneously. Although the system
completely deterministic, the behavior was apparently c
otic. Frequency-size statistics were obtained for slip eve
and the events fell into two groups: Smaller events obeye
power-law ~fractal! relationship, but there was an anom
lously large number of large events that included all
slider blocks. The observed behavior was characteristic
self-organized criticality@5#. Nakanishi @6,7# studied mul-
tiple slider-block models using the cellular automata a
proach. A linear array of slider blocks was considered,
only one block was allowed to move in a slip event. The s
of one block could lead to the instability of either or both
571063-651X/98/57~5!/5126~9!/$15.00
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the adjacent blocks, which would then be allowed to slip i
subsequent step or steps, until all blocks were again sta
Brown et al. @8# proposed a modification of this model in
volving a two-dimensional array of blocks. Many other stu
ies of slider-block models have been carried out and th
have been reviewed by Turcotte@9#.

Rundle et al. @10# considered a multiple slider-bloc
model in a mean-field approximation and showed that
energy fluctuations are characterized by Boltzmann statis
Xu and Sornette@11# commented on this work and argue
against thermalization. Moreinet al. @12# considered a mul-
tiple slider-block model without a driver plate. The dynam
friction was set equal to zero so that energy was conser
and cellular-automata solutions were obtained. Only o
block was allowed to slip during a time step. Sequen
sweeps across the lattice were carried out. Again a Bo
mann distribution of energies was found. The purpose of
paper is to carry out a full dynamical simulation of this pro
lem using a molecular-dynamics code.

II. MODEL

In this paper we consider one-dimensional linear arr
and two-dimensional square arrays of slider blocks; e
block of massm is connected to its neighbors with spring
~spring constantk). There is no driver plate in this model. I
both cases displacements are limited to thex direction. We
assume zero dynamic friction and prescribe the static frict
f s between a block and the surface over which it is slidin
The initial total energy in the system is also prescribed. B
cause the dynamic friction is zero, the total energy in
system is preserved. Some blocks are unstable at a g
time and are free to slip; the remaining blocks are stuck.

For the linear-array model a particular slider block is de
ignated by the subscripti . The equation of motion of each
block is

m
d2xi

dt2
5 f i , ~1!
5126 © 1998 The American Physical Society
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57 5127LOCALIZED VIBRATIONS IN SLIDER-BLOCK MODELS
with the net force on the blockf i given by

f i5k~xi 211xi 1122xi !. ~2!

If a moving block reaches zero velocity and the net force
this block is less than the static friction thresholdf s the block
will stick,

dxi

dt
→0, f i, f s then

dxi

dt
50, ~3!

until the net force exceeds the static friction

f i. f s . ~4!

It is convenient to introduce the nondimensional variable

Fi5
f i

f s
, Xi5

xik

f s
, T5tS k

mD 1/2

, Vi5
Akmv i

f s
,

Es5
kes

f s
2

. ~5!

The governing equations~1!–~3! become

d2Xi

dT2
5Fi ~6!

Fi5Xi 211Xi 1122Xi ~7!

with the stick condition

if
dXi

dT
→0, Fi,1 then

dXi

dT
50 ~8!

until the slip condition

Fi.1. ~9!

At T50 the blocks are given a random distribution
displacements; the resulting energy in the springs is es . The
mean energy in the springs atT50 is ēs . Since no energy is
dissipated by dynamic friction~the dynamic friction is taken
to be zero!, energy is conserved andēs is a constant inde-
pendent of time. It is convenient to introduce the no
dimensional energy parameterm,

m5
kēs

f s
2

. ~10!

This is the only parameter in the problem. Ifm is large, very
few of the blocks would be expected to stick; ifm is small, a
large fraction of the blocks would be expected to stick.
any given time the system can be viewed as a collection
clusters of moving blocks with stuck blocks on the clus
boundaries. If the force on a boundary block of a cluste
greater than one, then that block will join the cluster. If du
ing the motion of a block it has zero velocity and the force
this moment is less than one, the block will stick. If it is a
edge block, the block will be removed from the cluster; if
is an interior block, the cluster will break into two cluster
n

-

t
of
r
s
-
t

Our primary method of solution is a ‘‘molecular
dynamics’’ ~MD! algorithm for the numerical integration o
Eqs.~6!–~8! for all blocks simultaneously. At each time ste
the slip condition~9! for stuck blocks was checked. When
ever the velocity of an oscillating block went through ze
the stick condition~8! was checked and if the force on th
block was less than one the velocity was set to zero.

We have carried out a series of simulations using a M
algorithm on slider-block arrays with lengths up to 40
blocks for one-dimensional~1D! and 64364 for 2D arrays.
Periodic and free boundary conditions were considered,
ing basically the same results. A random distribution of i
tial displacements was given to the blocks corresponding
the specified value of the energy parameterm. In each simu-
lation a time-dependent transient was observed. After
transient a steady-state distribution of oscillating clusters w
obtained. Different time stepst with different ‘‘Runge-
Kutta’’ schemes were tested to ensure no dependence on
time discretization. We found that the time needed to obt
a steady-state distribution and statistical properties of
system were independent oft for sufficiently smallt.

Our simulations showed that independent of the dim
sion of the array~1D or 2D!, boundary conditions~free or
periodic!, type of random initial conditions, and for a larg
range of the energy parameterm the system self-organize
into a final steady state with the fraction of stuck bloc
essentially constant independent ofm and a large fraction of
the energy~generally more than 99%) localized in cluste
of slipping blocks. The size of the clusters of slipping bloc
increases systematically with increasing values of the ene
parameterm.

In the final steady state it is appropriate to analyze
distribution of harmonic modes in the clusters. For the
model the motion of thekth block in a cluster of sizen is a
combination of harmonic modes for the linear chain
blocks with fixed boundaries

Xk5(
l 51

l 5n

ClsinF lkp

n11Gsin~v lT1a l !, k,l P@1, . . . ,n#,

~11!

where the frequencyv l of model is given by

v l52sinF lp

2~n11!G , ~12!

with corresponding amplitudeCl and phasea l .
This modal expansion can also be used to formulate

alternative ‘‘semianalytical’’ algorithm for the time evolu
tion of a linear array. Equations~11! and ~12! completely
specify the behavior of a cluster of n blocks. The lifetime
a cluster is defined to be time between when the cluste
created and the time when a moving block in the clus
sticks or a boundary block slips. In writing Eq.~11! we have
assumed that the boundary blocks have zero displacem
This is not true, in general, so a shift and rescaling of
blocks coordinateX are required. However, as previous
stated, the total energy in the stuck blocks in the steady s
is less than 1%. The frequenciesv l are unaffected by thes
boundary adjustments.
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5128 57GLEB MOREIN AND DONALD L. TURCOTTE
The semianalytical method starts with arbitrary init
conditions. We identify clusters of moving blocks or bloc
with zero velocity and a net force greater than one. We n
determine theCl ,a l , andv l from Eqs.~11! and ~12!. The
third step is to find the shortest lifetime among the cluste
This is done by the numerical solution of the applicable
of algebraic transcendental equations and the stick and
conditions from Eqs.~9! and ~8!. The cluster geometry is
corrected and the sequence of steps is repeated until a st
state solution is obtained. We compared this approach w
the MD method for a linear array of four blocks and t
results were virtually identical.

III. ONE-DIMENSIONAL SIMULATIONS

We first present the results of MD simulations for the tim
evolution of 1D arrays of slider blocks. The time evolutio
for two typical examples with 750 blocks is given in Fig.
fixed edge conditions were used. The array configuratio
shown vertically with slipping blocks black and stuck bloc
white. The nondimensional timeT is shown horizontally. A
random distribution of energies~displacements! is given to
the blocks initially (T50). The results form52 are shown
in Fig. 1~a!; each fifth time step is printed and the total no
dimensional time isT55000. Initially, relatively few blocks
are stuck and the energy is randomly distributed. As ti
evolves clusters of slipping blocks form with the energy co
centrated in these clusters; many more blocks stick. Eve
ally, a steady-state configuration is reached. The results
m58 are shown in Fig. 1~b!; each 20th time step is printe
and the total nondimensional time isT520 000. The time
evolution is similar to that form52 except the transient i
longer and the clusters of slipping blocks are larger.

FIG. 1. Transient evolution of a linear model of 750 blocks. T
array configuration is shown vertically with slipping blocks bla
and stuck blocks white. TimeT is shown horizontally. A random
distribution of energies~displacements! is given to the blocks ini-
tially (T50). The development of well-defined clusters of slippi
blocks is clearly illustrated. All quantities are dimensionless.~a!
The energy parameterm52.0 and each fifth time step is shown ov
a total timeT55000. ~b! The energy parameterm58.0 and each
20th time step is shown over a total timeT520 000.
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The transient behavior of the simulation is further illu
trated in Fig. 2, where the fraction of stuck blocksCs is
given as a function of timeT for several values of the energ
parameterm. It is seen that the length of the transient i
creases systematically with increasing values ofm. It is also
seen that the fraction of stuck blocksCs for large times has
only a weak dependence onm, particularly for largem.

The transient behavior of the system is a process invo
ing the merger and breakup of clusters of slipping bloc
For each value ofm there is a preferred size for the stab
clusters that eventually emerge. The fraction of the blo
that are slipping is relatively constant; increasing the aver
energy increases the size of the clusters. The system
organizes into a steady-state configuration in which the m
cluster size has a systematic dependence on the energ
rameterm.

The fraction of stuck blocks at equilibriumCs f is given in
Fig. 3 as a function of the energy parameterm. The means
and standard deviations are given for a large number
simulations. In the energy range 2,m,32 the fraction of
stuck blocksCs f decreases only from 0.58 to 0.48. This fu
ther illustrates the relatively weak dependence ofCs f on m
for largem.

To illustrate the behavior of the clusters, the steady-s
distribution of energiesEi and velocitiesVi in a linear array
of 256 blocks withm51 is given in Fig. 4~a! and with m
58 in Fig. 4~b!. The energy of a block is taken to be the su
of the kinetic energy of the block and one-half of the pote
tial energy in the two adjacent springs. The kinetic energ
are taken at an arbitrary timeT so that some clusters hav
relatively small velocities compared to the total energy
blocks in that cluster, which remains constant during
cluster lifetime ~harmonic motion!. The blocks appear to
have a near sinusoidal standing-wave dependence of ve
ties within a cluster with the oscillations of adjacent bloc
180° out of phase. It is clear that there is a systematic
crease in the maximum energy with cluster size. As the
ergy parameterm is increased the size of the steady-sta

FIG. 2. Transient evolutions of linear arrays of 4096 blocks. T
fraction of stuck blocksCs is given as a function of timeT for six
values ofm. Each curve is obtained by averaging 25 simulatio
All quantities are dimensionless.
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57 5129LOCALIZED VIBRATIONS IN SLIDER-BLOCK MODELS
clusters also increases, allowing the same number of slip
blocks to accommodate the larger amount of energy av
able.

In order to better understand the structure of the stea
state clusters we have carried out spectral analyses of the
velocity of a block within a cluster that has reached t
steady state. Typical examples for clusters with 22 and
oscillating blocks are given in Fig. 5. The spectral pow
densityP of the velocity of an inner cluster block is given a
a function of frequencyv. The excitation of the frequencie
given in Eq.~12! is clearly illustrated. The highest frequenc
is always dominant with the others suppressed by an orde
magnitude or more. All resonant frequencies with respec
the highest frequency are missing from the power spectr
In the steady state the blocks in a cluster exhibit a w
defined harmonic oscillation. This harmonic oscillatio
evolves during the initial transient. AtT50 a random distri-
bution of modes, a white noise, was introduced. The non
ear static friction mixes these modes until a single harmo
becomes dominant in a cluster.

Our spectral studies show that the highest-freque
mode in Eq.~11! dominates. Thus we consider only th
model 5n and Eqs.~11! and ~12! become

Xk5CnsinF nkp

n11Gsin~vnT1an!, ~13!

vn52sinF np

2~n11!G . ~14!

In order for the blocks on the edge of a cluster to rem
stuck the maximum nondimensional force on these blo
must be less than one from Eq.~8!. We will assume that the
actual force on these blocks isF51/2 and will show that this
is consistent with our results.

The maximum displacement of the edge block is obtain
by takingk51 and theF51/2 force condition requires tha

FIG. 3. Steady-state fraction of stuck blocksCs f given as a
function of the energy parameterm. The mean and standard devi
tion are given at each energy for 25 simulations. All quantities
dimensionless.
ng
il-

y-
lip

2
r

of
to

.
l-

-
ic

y

n
s

d

Cn5
1

2sinF np

n11G 5
1

2sinF p

n11G . ~15!

The motion of alln blocks in a cluster of sizen is now
specified.

We next find the amplitude of the motion of the centr
block in a cluster with an odd number of blocks, that is,n
52m11 with k5m11. From Eqs.~13! and ~15! we have

Xm115

sinFpn

2 G
2sinF p

n11G 5
~21!~n21!/2

2sinF p

n11G . ~16!

The total energy of the central block in a cluster is the ma
mum kinetic energyEkem of the block and is given by

Ekem5
vn

2Xm11
2

2
5

1

8sin2F p

2~n11!G
. ~17!

For very large clusters (n→`) this becomes

Ekem→
n2

2p2
. ~18!

These results are compared with observations in Fig. 6.
seen that there is good agreement.

The total energy in a cluster of sizen, Ecl , can be ob-
tained by summing the maximum kinetic energies of t
blocks in the cluster. The result is

Ecl5
n11

16sin2F p

2~n11!G
, ~19!

which for very large clusters becomes

Ecl→
n3

4p2
. ~20!

These results are compared with observations in Fig
Again, good agreement is found.

The analysis given above shows that the energy in la
clusters (n@1) scales with the size of the cluster accordi
to Ecl;n3. Thus the larger the energy the larger the me
size of the clusters required to contain the energy. Figure
and 2 show that the transient behavior results in a s
organization of clusters in which approximate normal mo
oscillations accommodate the initial energy. The nonlin
stick-slip behavior mixes the initially random modes to t
approximate normal mode behavior observed in the ste
state.

Although there is a statistical distribution of cluster size
there is a systematic dependence of the mean cluster sin̄
on energym. The distribution of cluster sizesf (n) is given
in Fig. 8 for four nondimensional energiesm50.5, 1.0, 2.0,
and 4.0. Although there are relatively large numbers of cl

e
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FIG. 4. Steady-state distributions of energiesEi and velocitiesVi given for a linear array of 256 blocks with~a! m5 1 and~b! m58. All
quantities are dimensionless.
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ters with n51,2, these contain a very small fraction of th
slipping blocks. There is a well-defined cluster size that c
tains the most blocks and this is seen to increase system
cally with increasingm. In order to quantify the dependenc
of cluster size on energy we considerncl clusters each with
size n̄. Again assuming that one-half of theN blocks are
slipping, we can write

0.5N5ncln̄. ~21!

The cluster energyEcl is related to the energy parameterm
by

Nm5nclEcl . ~22!

Noting that Ecl;n̄3 from Eq. ~20!, we can combine Eqs
~21! and ~22! to give

n̄;Am. ~23!
-
ti-

The dependence of the mean cluster size from Fig. 8 on
energy parameterm is given in Fig. 9. The best-fit straigh
line is a power lawn̄;m0.53, which is in excellent agreemen
with Eq. ~23!.

IV. TWO-DIMENSIONAL SIMULATIONS

We have also carried out a series of MD simulations
2D square slider-block arrays. The nondimensional variab
introduced in Eq.~5! and the nondimensional energy intro
duced in Eq.~10! remain valid. A particular slider block is
designated by subscriptsi ~position in thex direction! and j
~position in they direction!. Displacements are restricted t
the x direction, so that the governing nondimensional eq
tions become

d2Xi , j

dT2
5Fi , j , ~24!
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57 5131LOCALIZED VIBRATIONS IN SLIDER-BLOCK MODELS
Fi , j5Xi 21,j1Xi 11,j1Xi , j 211Xi , j 1124Xi , j , ~25!

with the stick condition

if
dXi , j

dT
→0, Fi , j,1 then

dXi , j

dT
50 ~26!

until the slip condition

Fi , j.1 ~27!

instead of Eqs.~6!–~8!.
The time evolution for a 64364 array with m52.5 is

given in Fig. 10. The slipping blocks are white and the stu
blocks are black. Under the random initial conditions giv
at T50 few blocks are stuck. Soon patches of slippi
blocks form and these patches migrate, change shape,
lide, and break up. Eventually, a steady state is establis
with nearly circular patches with a normal mode behavi

FIG. 5. Power spectral densityP as a function of frequencyv
for the velocityV(T) of a slipping block in steady-state cluster
We considerm58.0 and cluster size~a! n522 and~b! n532. All
quantities are dimensionless.
k

ol-
ed
.

The transient sticking and slipping of blocks has conver
the initial random phases and amplitudes~white noise! to a
series of steady-state, drum-head-like normal mode osc
tions.

The transient behavior is further illustrated in Fig. 1
where the fraction of stuck blocksCs is given as a function
of time for several values ofm. Once again the transien
self-organization leads to a fraction of stuck block being a
proximately constantCs;0.76 over a relatively wide range
of energies.

In Fig. 12 the final equilibrium configurations are give
for several different energies. In each case nearly circu
patches form with normal mode behavior. The size of
patches increases systematically with increasing energy a
the 1D simulations. The general behavior of the 2D simu
tion is very similar to the 1D simulations discussed abov

FIG. 6. Dependence of the maximum energy in a clusterEkem

divided by (n11)2 on cluster sizen given for energy parameter
m58.0, 16.0, and 32.0. The results are in good agreement with
prediction given in Eq.~17!. All quantities are dimensionless.

FIG. 7. Dependence of the cluster energyEcl divided by (n
11)3 on cluster sizen given for energy parametersm54.0, 8.0,
16.0, and 32.0. The results are again in good agreement with
prediction given in Eq.~19!. All quantities are dimensionless.



b
a
to
tio
io

ou
n
i
h

he
be

t

rray

of
hite
he
oc-

re
ee

3

r

is
of

n-

64

ll

5132 57GLEB MOREIN AND DONALD L. TURCOTTE
V. DISCUSSION

We have considered arrays of slider blocks connected
springs that exhibit stick-slip behavior due to a friction
interaction with a surface. The dynamic friction is taken
be zero so that energy is conserved. The governing equa
are linear except for the stick-slip behavior; this behav
introduces a strong nonlinearity.

A series of numerical simulations have been carried
on both linear arrays of blocks and square, two-dimensio
arrays of blocks using molecular-dynamic algorithms. Sim
lar evolutionary behaviors are found in the two cases. T
only parameter in the problem is the energy parameterm. For
large values ofm the mean energy is large compared to t
static friction and a large fraction of the blocks would
expected to slip. For small values ofm the mean energy is
small and a small fraction of the blocks would be expected

FIG. 8. Distribution of cluster sizesf (n) given as a function of
n for energy parametersm50.5, 1.0, 2.0, and 4.0. These results a
for a linear array of 4096 blocks and 25 realizations have b
averaged. All quantities are dimensionless.

FIG. 9. Dependence of the mean cluster sizen̄ from Fig. 8 on
the energy parameterm. The best-fit straight line has a slope of 0.5
compared to the value 0.5 from Eq.~23!. All quantities are dimen-
sionless.
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slip. However, this is not the behavior observed as an a
approaches a steady state.

Initially, we start the arrays with a random distribution
energies in the blocks that corresponds closely to a w
noise or random distribution of normal modes. In both t
1D and 2D arrays a transient period of self-organization

n

FIG. 10. Transient evolution of a 64364 square array of slide
blocks with energy parameterm52.5. The slipping blocks are
white and the stuck blocks are black. The evolution of the system
shown at six times. The development of nearly circular clusters
slipping blocks is clearly illustrated. All quantities are dimensio
less.

FIG. 11. Transient evolution of two-dimensional arrays of
364 blocks. The fraction of stuck blocksCs is given as a function
of time T for the valuesm50.4, 0.8, 1.0, 1.5, 2.0, 3.0, and 4.0. A
quantities are dimensionless.
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57 5133LOCALIZED VIBRATIONS IN SLIDER-BLOCK MODELS
curs in which clusters of slipping blocks evolve. Eventually
steady state is reached without further evolution. In t
steady state the slipping clusters exhibit a normal mode
havior with the harmonic motion of adjacent blocks in
cluster being 180° out of phase and the energies of blo
having a sinusoidal dependence on position across the
ter. The 2D clusters have nearly circular planforms and h
drum-headlike normal mode oscillations.

In both one and two dimensions the fraction of stu
blocks is nearly independent of energy over quite a w
range of energies. However, the size of the clusters ha
systematic dependence on energy, with the mean cluster
increasing systematically with energy. The energy in
edge blocks in a cluster is prescribed as a fraction (;0.5) of
the maximum force a stuck block can sustain. In one dim
sion the energy of a clusterEcl scales with the sizenc of a
cluster according toEcl;nc

3 . Thus larger clusters can ac
commodate more energy. The nonlinear stick-slip beha
converts and self-organizes the initial random mode beha
to a nearly normal mode behavior.

We observe in both one and two dimensions that the fr
tion of stuck blocks is essentially independent of the ene
for relatively large energies (m.1). This can be explained
qualitatively in terms of a scale-invariant cascade. Sm
clusters collide forming larger clusters until the clusters
large enough to absorb the available energy. This collis
process is independent of the size of the clusters colliding
that the fraction of stuck blocks is also scale invariant a
therefore constant.

FIG. 12. Steady-state configurations of the two-dimensional s
tem of size 64364 given for energy parametersm50.4, 0.6, 1.0,
1.5, 2.0, and 3.0. All quantities are dimensionless.
@1#
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It is interesting to compare the behavior of our slide
block model with the observation of oscillons in vertical
vibrating granular layers@13#. An oscillon, in this context, is
an isolated heap of grains that oscillates up and down.
cause the oscillon is subharmonic, peaks and craters can
exist. They are also very stable lasting for more than 15

periods. In our model excitations are also localized and
come time independent.

It is also of interest to point out the profound differenc
between a cellular automata solution to this problem@12# and
the molecular-dynamics formulation presented in this pap
In the cellular automata formulation only one block was
lowed to slip at a time; the remaining blocks were stationa
If the block considered was unstable it was allowed to co
plete a single harmonic oscillation before the next block w
studied using a checker-board selection of blocks. In t
case the energy distribution in the blocks thermalized an
modified Maxwell-Boltzmann distribution of energies wa
obtained.

In the molecular-dynamics formulation of the problem t
equations of motion of slipping blocks are solved simul
neously and normal mode oscillations are obtained. Patc
of slipping blocks evolve into an equilibrium structure
which the fraction of stuck blocks has only a weak depe
dence on energy, but the cluster size systematically incre
with energy. In this formulation the self-organized critic
behavior and chaotic behavior associated with driven, di
pative slider-block models is not observed.

In addition to the simple model presented here we h
also found that the same self-organization process can
observed in more complex slider-block systems. In the pr
ence of a stationary driver plate the system possesses a
lar set of fundamental harmonic modes. With a slow mov
driver plate clusters of moving oscillating blocks can follo
the driver plate. Fundamental modes in this case were fo
to be a disturbed version of harmonic modes for the sys
without driving. There was no stationary state and the li
times of the clusters were finite. In addition, a small dynam
friction can be accommodated. We have not studied th
cases in detail as molecular-dynamic simulations beco
very time consuming.

We have also found it interesting to compare our resu
with models used to describe localized vibrations in perf
anharmonic crystals@14,15#. These physics models demon
strate that self-localized vibrational modes can be stable
many types of interatomic potentials. The mechanics of
calization is somewhat different as the frequency of th
localized modes is above the spectrum found for the lin
approximation of the interatomic potential.
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